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Figure 1 - Magnus Conductor Sharing 
                 (Hicks, 2009)

Abstract: To understand why competitive markets, proven technologies 
and conventional practices do not develop stranded offshore hydrocar-
bons deposits of 3 to 15 million barrels oil equivalent (OGA, 2016)21, it 
is important to understand that “Controllable Cost” is the primary driver 
preventing said development.  In a world where hydrocarbon prices are 
set by onshore fracking, the price is unlikely to increase in the near fu-
ture and, thus, controllable cost reduction is required.  Stranded offshore 
hydrocarbons deposits of 3-15 million barrels oil equivalent will continue 
to be uneconomic until the development “cost” is substantially reduced.  
Obvious technologies, like subsea tie-backs, have already been included 
within previous uneconomic development proposals.  Marginally reducing 
cost by tweaking various components of subsea tie-backs is unlikely to 
make stranded hydrocarbons economic.  As Einstein said, insanity is doing 
the same thing over and over again and expecting a different result.  If you 
ignore the  jargon, subsea infrastructure is not necessarily complex but it is 
always expensive and, thus, forms part of the problem.  Developing strand-
ed hydrocarbons requires new technology that can access multiple stranded 
hydrocarbon discoveries while reducing subsea infrastructure to a single 
wellhead, pipeline, riser and control umbilical.  Amalgamating multiple 
laterally separated stranded hydrocarbon pools to single point-A-to-point-B 
pipeline, riser and control umbilical not only decreases subsea infrastruc-
ture cost but can also increase reserves associated with the investment.  
With the above terms of reference in mind, Oilfield Innovations proposes 
the new technology of integrating proven wellhead splitting and sharing 
technology (see Figure 1) into a single subsea conductor used to batch-drill 
and batch-complete multiple well bores concurrently.  Extended reach wells 

may be drilled to multiple stranded hydrocarbon pools from a from a single wellhead.  Additionally, Oilfield Innovations 
propose that a subterranean high pressure separator, used for water disposal at the wellhead, can be added to substantially 
reduce water disposal costs and increase reserves for multiple stranded reservoirs.  Oilfield Innovations have initially iden-
tified 100 opportunities in the UK North Sea where two (2) or more small pools (i.e. more than 200 stranded discoveries) 
can be tied-back with such new technology.

Introduction

	 Uneconomic “small” offshore hydrocarbon discoveries 
are substantially larger than economic onshore discoveries, 
wherein “small” refers to discoveries of 3 million to 15+ mil-
lion barrels oil equivalent in the North Sea (OGA, 2016)21.

	 When a stranded pool of hydrocarbons is discovered, sub-
sea development and tie-back to existing infrastructure is 
evaluated, but the small economic size does not justify the 
subsea infrastructure cost, tariffs, waste water disposal, well 
count and drilling costs.

	 To address the issue the UK North Sea has been working 
on standardization for twenty years, initially through CRINE 
and now through the trade association Oil and Gas UK.  
While plug-and-play standardization of existing subsea infra-

structure can reduce costs, it is unlikely to make small pools 
of hydrocarbons economic in an industry driven by onshore 
fracking.

	 Fracking has existed since the 1940’s and is nothing new.  
Many tried to make shale fracking work and failed, but in 
recent years new fracking technologies have been able to in-
crease shale productivity to the level that is it displacing off-
shore oil and gas.

	 World Oil reported in March 2017, “Exxon Mobile is 
diverting about one-third of its drilling budget this year to 
(onshore) shale fields that will deliver cash flow in as little as 
three years, said Chairman and CEO Darren Woods”27.

	 Efforts to standardise and lock in existing technology to 
create marginal cost reductions are unlikely to make offshore 
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Figure 2 - Small Pools and Conventional Gated Process (Hopper, 2016)18

oil and gas more competitive.

	 To survive current prices, offshore oil and gas needs to 
develop new technologies that can be competitive with new 
fracking technologies used in shale plays.

	 Subsea infrastructure may need standardisation, but oil and 
gas drilling represents at least half of the development costs 
and has used plug-and-play standardization for decades.

	 Various sized connections and tubular sizes for drilling and 
completion equipment have plug-and-play standardisation 
through API and ISO, wherein vendors wishing to sell tooling 
or equipment ensure compatibility with those standards.

	 This prospectus explains how proven technologies, like 
Figure 1 Conductor Sharing, can be adapted and combined 
with proven Extended Reach Drilling (ERD) technology to 
provide a step change in the cost of developing stranded off-
shore hydrocarbons.

	 Changing the paradigm of uneconomic stranded offshore 
hydrocarbons discoveries requires a step-change in cost that 
can only occur with “new technology” that minimises subsea 
infrastructure, waste water disposal, well count and drilling 
costs.

	 Accordingly, to understand how new technology can be 
implemented it is important to understand past and present 
industry processes and initiatives.

Conventional Development Process

	 The oil and gas industry uses a linear gated decision mak-
ing process shown in Figure 2, wherein the appraisal phase 
specifies the givens and defines a frame that bounds field 
proven solutions.  A universe of established opportunities is 
generated that lies within the frame and rigorous step wise 
process is used to establish the highest value option during 

the select phase (Hopper, 2016)18.

	 Every undeveloped stranded hydrocarbon discovery will 
have been subjected to the Figure 2 process one or more 
times after its discovery.

	 The rigorous linear nature of industry’s gated process does 
not consider new technologies and cannot easily accommo-
date new information so, commonly, when change is neces-
sary the project either presses on regardless or goes into a 
major recycle, which significantly increases the risk of cost 
and schedule overruns (Hopper, 2016)18.

	 Ernst & Young (2014)18 evaluated 365 mega projects and 
concluded that 78% of European upstream projects faced de-
lays and 65% faced cost overruns, with the average overrun 
of 53%.  Nandurdikar (2014)18 in a presentation to IPA, came 
to a similar conclusion and found that E&P megaprojects had 
a success rate of 22% compared with a success rate of 52% in 
other industries.  The inflexible and rigid approach adopted 
by industry to the project management is one of the causes of 
these project failures (Hopper, 2016)18.

	 Accordingly, cost overruns have come to be expected to 
the extent that every conventional aspect of hydrocarbon de-
velopment is risked until stranded pools of hydrocarbon ap-
pear uneconomic due to risk multiplication factors associated 
with the gated process and deficiencies of existing offshore 
technology.

	 Risk reduced recoverable hydrocarbon forecasts are mul-
tiplied by stagnate free market price forecasts, limited by 
West Texas fracking, to calculate a discounted (reduced) net 
present value.  The net present value is compared to risked 
(inflated) controllable development costs that use the limita-
tions of existing technology and assume cost overruns and 
schedule delays to determine whether, or not, development of 



5

Terms of Reference

 July 2017 - PROSPECTUS | 

Figure 3 - Previous Initiatives (Duthie, 2016)25

Previous 
Initiatives  

1994 – CRINE 

Same themes highlighted by CRINE such as standardisation, simplification & collaboration…. 

1998 Follow On CRINE  report 

Original report 1994 on back of dramatic decrease in oil price to $15 (62% drop from 1990 to 1994).
CRINE Network established 1994 – 1999 supported by the industry on a part time basis and Operator driven.
1994 report made 6 recommendations (Codes, Standards and Specifications/ Technical Standardisation/Commercial
Standardisation/ Regulatory/ Cultural Change/ Drilling Practices Committee).

Large report but deemed high level, mixed feedback on the success of CRINE.
No evidence or legacy of CRINE today except Terms and Conditions which were adopted by LOGIC.

Other Initiatives 

Around Oil price drop from $25 to $12 (52%).
Project and Procurement Managers Conference report, 1998:
Applying the philosophy of CRINE to FPSO, Subsea and Deep-water.

Industry sponsored event.
Focus on Functional Specifications, but never adopted by industry.

Conclusion: No visibility of long term solutions being implemented and adopted 

Majority of other initiatives such as:
Oil & Gas Industry Task Force commenced 1999 till 2001.
LOGIC commenced 2000 – now part of Oil and Gas UK (2007).
PILOT commenced 2000 -  now part of MER (OGA 2015).

Similar trend followed where work groups never really followed through to provide detailed solutions and adopt a
longer term approach.
Only provided high level recommendations.

Previous UK North Sea Initiatives

	 Figure 3, which is taken directly from an Oil and Gas UK 
presentation, shows that each price cycle since 1994 has 
caused a number of North Sea initiatives, from which Duth-
ie25 (2016) states that no visible long term solutions were ei-
ther implemented or adopted.

	 With regard to the present price cycle, it is important to 
recognise that important structural changes are taking place 
in, for example, US reliance on energy imports where shale 
plays and new fracking technological advancements are dis-
placing offshore hydrocarbons (Dale, 2015)26.

	 After a complete oil price collapse in 1986, oil rebounded 
and cycled around $20 per barrel for about 20 years.

	 Structural changes caused by fracking of shale plays have 
the realistic possibility of causing oil price to cycle around 
$40 per barrel for decades.

	 Accordingly, it is important to remember that significant 
changes may be necessary for the offshore oil and gas to com-

pete with onshore shale and, therefore, previous and present 
initiatives to reduce cost are critical to the survival of the 
offshore oil and gas industry.

	 The 1994 CRINE report made six recommendations to 
standardise specifications, technical, commercial, regulatory, 
cultural and drilling practices.

	 In 1998 project and procurement managers recommended 
application of CRINE to FPSO, subsea and deepwater.

	 The LOGIC and PILOT projects and various industry task 
forces have occurred after the turn of the century.

	 Now, more than twenty years after it conception, Figure 4 
describes how Oil and Gas UK are presently attempting to 
reduce subsea infrastructure costs and risks using standardi-
sation.

	 The previous efforts were obviously worthwhile because 
they are being continued in present initiative that will be im-
portant in the development of stranded pools of hydrocar-
bons, but it is important to recognise that present initiatives 
are not addressing all factors preventing development of 
stranded hydrocarbon discoveries.

a stranded pool of hydrocarbons is economic.

	 Recognising the inherent problems of a rigorously linear 
process and an inability to develop small pools of North Sea 
hydrocarbons, the Figure 3 initiatives attempted to rectify 
some of the issues.
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Figure 4 - Oil and Gas UK Subsea Standardisation (Plug-and-Play) Theme  (Duthie, 2016)25
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An “Iceberg” of Other Factors

	 Standardisation is important, but stranded offshore hydro-
carbon development may require reducing various portions 
of subsea infrastructure to an absolute minimum quantity of 
standardized lower cost piping, hoses and valves.

	 Figure 4 depicts Oil and Gas UK’s efforts to addresses 
many important aspects of subsea infrastructure that are crit-
ical to stranded hydrocarbon tie-back, but it does not include 
the costs of drilling or oil and gas treatment.

	 As shown in Figure 3, previous industry efforts began with 
standardisation, whereby standardising the piping, hoses and 
valves of subsea infrastructure is a good place to start, but 
it is only the tip of the iceberg and, unfortunately, it is the 
hidden part of an iceberg that sinks ships or, in this case, 
stranded hydrocarbon developments.

	 Half, or more, of small pool development costs and risks 
are associated with connecting the reservoir to subsea in-
frastructure through the wing valve of the production tree, 
which is not considered by the Figure 4 standardisation plan.

	 Like the tail-wagging-the-dog, subsea infrastructure engi-
neers have included subsea trees in Figure 4 because they 
want to select the subsea production tree to fit their piping 
and hose connections without considering the substantial ef-
fect on well construction costs.

	 Standardising subsea production trees may actually in-
crease development costs by locking in current technology 
and preventing, for example, conductor sharing technology 
used on production platforms.  Also, regardless of whether 
new or conventional technology is used, the subsea produc-
tion tree comprises critical drilling and completion equip-
ment that can favourably or adversely affect half, or more, 
of the project costs, wherein selection of the most economic 
subsea tree requires competence in drilling and completion.

	 The other half, or less, of costs and risks are subsea in-
frastructure and hydrocarbon treatment and/or water disposal 
equipment.  Subsea infrastructure is important but hydrocar-
bon treatment and/or water disposal are more likely to pre-
vent the development of stranded hydrocarbon pools.

	 Hydrocarbon treatment will depend upon the composition 
of oil and/or gas in place with any tie-back and commingling 
of fluids with existing infrastructure production being either 
viable or unviable. 

	 Disposal of produced water is a variable that limits a 
stranded hydrocarbon discovery’s production life and its re-
coverable reserves.

	 Accordingly, the hidden parts of the iceberg preventing 
stranded offshore hydrocarbon development are typically 
well construction costs, hydrocarbon treatment and water dis-
posal, which are substantially more important than standard-
ising and locking-in established but old subsea technology.
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Figure 5 - Conventional Tie-back versus ERD to Common Tie-back Point

Old versus New Technology

	 The left of Figure 5 shows established older technology 
that can be standardised to lock-in both its benefits and de-
ficiencies, using conventional subsea development ties-back 
of multiple small pools or a compartmentalised reservoir with 
multiple wells connected to a production manifold that com-
mingles flow through a pipeline to a host facility.  The host 
facility can be a platform or a floating production, storage and 
off-loading (FPSO) facility.

	 Controlling a conventional manifold and multiple subsea 
production trees can involve a complex system of umbilical 
lines with numerous bundles and complex interconnections 
that can be very expensive.

	 Conventional tie-backs to a central manifold are typically 
considered with respect to the need for more than one well 
to fully develop a compartmentalised reservoir or multiple 
small pool reservoirs separated by kilometres.

	 Such evaluations will have already been considered at least 
once after discovery of a stranded hydrocarbon pool.

	 The first step in any development effort is to seek cost re-
ductions and/or efficiency increases from service companies, 
manufacturers and/or contractors and, thus, it is likely that 
cost reductions comparable to those associated with standard-
isation may have already have been factored into previous 
economic analysis.

	 Accordingly, standardisation can reduce risk and improve 
the economics of stranded offshore hydrocarbons, but stan-
dardizing established older technologies is unlikely to cause 
previously uneconomic discoveries to be developed. 

	 Alternatively, the right of Figure 5 illustrates that a new 
technology can comprise adapting and combining standards 
and field proven technologies like conductor sharing well-
heads and extended reach drilling to create a new standard 
that can be adapted and combined by a qualified vendor and/
or service provider.

	 Oil and gas can learn from others industries.  For example, 
computing and software industries are extremely competitive, 
yet Microsoft® has released the source code to an open-source 
operating system, based on Debian GNU/Linux, that runs on 
network switches (Williams, 2016)28.  If Microsoft® can dump 
its proprietary software in favour of open source Linux, an 
oil and gas service provider can use the same philosophy to 
facilitate deployment of its new technology.

	 Accordingly, as is explained on the following pages, to-
tal development cost of the right side of Figure 5 could be 
+/-30% less than that of the left side of Figure 5, wherein a 
Service Provider who manufactures the new technology could 
open source the connection interfaces to allow standardisation 
of the new technology to quickly establish its prominence and 
widespread usage within the oil and gas industry.
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Table 1 - Small Pools  withi a 5km Extended Reach Drilling Radius (see Appendix A for UK North Sea)

Figure 6 - Examples of Small Pools  withi a 5km Extended Reach Drilling Radius (OGA,2016)21

SNS Northern 
North Sea

Moray Firth Central North 
Sea

Total

18 17 27 38 100

Pooling Stranded Discoveries

	 Reducing risk and increasing net present value can require 
increasing recoverable reserves by amalgamating or pooling 
stranded discoveries using commingled flow and a single tie-
back to existing infrastructure.

	 Figure 6 shows groups of two or more small pools within 
a 5 kilometre radius, wherein looking at the entire UK North 
Sea, at least 100 such instances can be found, as shown in 
Table 1.

	 The Figure 6 excerpt of the OGA21 map in Figures 24-27, 
of the appendix, show that a 5 kilometre extended reach well 
can access two or more small pools from a single location, 
wherein a conductor sharing wellhead could produce laterally 
separated reservoirs to a single pipeline with a single control 

umbilical to reduce cost.

	 The Central and Moray Firth portions of the UK North Sea 
have the most opportunities for connecting multiple small 
pools with a commingled single tie-back to existing infra-
structure.

	 Using extended reach drilling, a single subsea wellhead 
above a conductor sharing arrangement can access multiple 
small pools to at least double the recoverable reserves as-
sociated with the economics and, thus, can reduce risk and 
increase net present value.
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Figure 7- 2010 Extended Reach Well Limits and Classifications (Bennetzen, 2010)22

Extended Reach Drilling

	 Figure 7 shows two graphs illustrating the horizontal de-
parture of extended reach drilling (ERD), wherein the up-
per graph depicts the progressive technology increases from 
1975 to 2010 while the lower graph shows the categories of 
ERD.

	 Figure 7 also clearly shows that five (5) kilometres hori-

zontal departure from the wellhead was an average extended 
reach well almost a decade ago.

	 Accordingly, the five (5) kilometre radii in Figure 6 and 
Figures 24-27 represents an average extended reach horizon-
tal departure from the sea bed wellhead and indicates that 
it is possible to drill such distances with current technology 
to connect two or more small pools with a single tie-back to 
existing infrastructure.
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	 Extended reach drilling is more costly and time consuming 
than, for example, the low or medium reach categories shown 
in Figure 7; however, Oilfield Innovations have invented a 
method of batch drilling the same section for up to three (3) 
wells to reduce the cost of ERD wells by immediately apply-
ing lessons from one well to the next and avoiding the costly 
process of changing bottom hole assemblies (BHA).

Batch Drilling

	 Conventional big-bore 18 ¾ inch subsea wellhead systems 
are capable of hanging 16 inch, 14 or 13 ⅜ and 10 ¾, 9 ⅞ or 
9 ⅝ inch casing strings, wherein Oilfield Innovations have 
devised a way to batch drill and batch set each of these casing 
sections.

	 For example, Figures 8 and 9 show the heel and toe sec-
tions of an extended reach well with a 5 kilometre departure, 
wherein after setting surface casing three (3) back-to-back 
17 x 20 inch bi-centre bit (see Figure 36) hole section can be 
drilled and followed by the running of three back-to-back 16 
inch casing strings for significant time and cost savings.

	 Generally, drilling shallow geology is relatively easy but 
running casing can be challenging.  Picking-up, handling and 
laying down bottom hole assemblies (BHA) is also time con-
suming and costly.

	 Oilfield Innovations have invented a whipstock system 
that can be rotated within a conductor sharing arrangement 
to allow drilling of hole-sections, pulling-out-of-the-hole 
(POOH) and racking back the BHA followed by rotating the 
whipstock and running-in-the-hole (RIH) to drill the next 
section.

	 By rotating a whipstock in a conductor sharing arrange-

ment, three 17 x 20 inch hole sections can be drilled in suc-
cession and followed by running three 16” inch casing sec-
tions, wherein the relatively short drilling time, large hole 
size and heavy drilling mud maintain the hole until each of 
the casing strings are run and cemented after sequentially ro-
tating the whipstock to select one of the three boreholes.

	 Running and cementing three 16 inch casing strings re-
moves time normally spent waiting on cement hardening 
since the first cement job will have hardened by the time the 
last cement job is carried out.

	 The efficiency gains of repeatedly doing the same task in 
batches allows the lessons from the previous job to be imme-
diately applied to the next job.

	 Accordingly, significant time and cost is saved by picking 
up and laying down the same BHA once for three wells and 
the same casing running equipment and the same cementing 
equipment once for three wells.

	 Additionally, speciality crews who are typically brought to 
the rig to run casing are mobilised and demobilised once and 
used in close succession to minimise daily crew costs, daily 
rental costs and transportation costs to and from the rig.

	 Depending upon the geology, the same savings can be real-
ised on the 14 ½ x 17 ½ inch bi-centre bit (see Figure 36) and 
13 ⅜ or 14 inch casing section.

	 In instances where, for example a fault (see Figure 8) or 
other geologic issue increase the probability of time depen-
dent hole instability, the 12 ¼ inch hole section can be drilled 
and 9 ⅝ or 10 ¾ inch casing run and cemented before rotating 
the whipstock to begin the next batch drill and case section.  
The same time savings for the BHA will be applicable and 
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Figure 9 - Toe of an Extended Reach Well compared to Conventiional Well  (Allen, 1997)23

the casing costs will increase marginally for rigging up and 
down, but rig moves are avoided and the lessons learned on 
one hole-section can be applied to the next to reduce both risk 
and cost.

Drilling Challenges

	 Extended reach wells are more challenging than common 
low to medium reach wells because proper drilling practices 
are critical to success.

	 Batch drilling and casing off hole-sections has the advan-
tage of immediately correcting any mistakes made on the pre-
vious operations and repeating any successes on the next op-
eration, whereby ERD becomes much easier, faster and lower 
cost.

	 Additionally, geologic and hole instability uncertainties 
can be reduced by adjusting or keeping drilling fluid proper-
ties based upon the information gained in the previous hole 
section passing through approximately the same geologic 
time periods.

	 Drilling and well construction challenges are often driven 
by the unknown, wherein perceived problems may not ex-
ist and/or over-compensation or under-compensation for real 
problems can exacerbate the challenges.

	 Batch drilling and casing the first hole-section will uncov-
er real challenges or dispel expected challenges that never 
materialise, wherein the second and third batched drilled and 
cased hole section will learn from the first hole section to 
lower well cost.  This is particularly advantageous when, for 
example, a medium reach hole-section can be drilled first 
and followed by a more challenging extended reach well 
hole-section.

Comparison to Conventional Wells

	 Conventional medium reach wells (see Figure 8) are com-
mon place and are considered average risk.  Typically, subsea 
locations are selected to avoid any shallow gas and reduce 
well complexity and comprise conventional low reach wells 
like that shown in Figure 9.

	 Drilling technology has advanced to the level that boring 
through rock is relatively straight forward and it is the “flat-
times” for casing and other operations carried out between 
boring that are driving cost, whereby Oil and Gas UK are 
currently carrying out studies to measure “flat-times” in an 
effort to improve efficiency.

	 As shown in Figures 8 and 9, casing locations are selected 
primarily according to the geologic formation and true verti-
cal depth and, therefore, the same number of casings can be 
required for a low, medium or extended reach well.  Because 
the “flat-times” between drilling operations are driving costs 
more than the boring of rock, when properly executed, ex-
tended reach wells are not necessarily that much more expen-
sive.

	 It is the casing and “flat-times” that are primarily con-
trolling cost and, therefore, the cost of wells are not the ratio 
of their drilled lengths.

	 Accordingly, drilling consecutive sections for multiple ex-
tended reach wells of 5 kilometres horizontal displacement 
can have a significantly lower cost than drilling multiple low 
reach wells with 5 kilometres of tie-back pipeline and umbil-
ical.
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New Conductor Sharing Technology

Figure 10- Plug and Play 48” Cloverleaf Conductor Sharing Specification
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New Conductor & Casing Sharing Technology

	 Oilfield Innovations’ new technology adapts existing stan-
dards and, therefore, uses standardised sizes and interfaces 
in in a new way within the accepted boundaries of current 
established specifications.

	 Oilfield Innovations’ have nicknamed our patented casing 
sharing technology the “Magic Crossover” (see Figures 15 
and 16) and our patented conductor sharing technology the 
“Cloverleaf” (see Figures 10-11, 13-14 and 19), wherein both 
are compatible with standard wellhead and extended reach 
drilling technologies usable with subsea trees, to enable tie-
back of multiple pools of stranded hydrocarbons through a 
single pipeline.

	 With regard to the “Cloverleaf” technology specification 
in Figure 10, numerous examples of multiple wells through a 
single conductor exist, like the North Sea Magnus wellhead 
and trees depicted in Figure 1, and three conductor sharing 
North Sea Britannia wellhead and production trees in Figure 
12, whereby such technology has been documented by many 
authors (Sund5, 1997; Dharaphop6, 1999; Tuah7, 2000; Anch-
aboh8, 2001; Faget9, 2005; Santos10, 2006; Matheson11, 2008; 
Hicks1, 2009; Damasena2, 2014; Terimo13, 2016).

	 Offshore platforms have developed conductor sharing 
because they lacked slots for additional wells and, unfortu-
nately, the technology has never been translated to a subsea 
arrangement until Oilfield Innovations patented a subsea con-
ductor sharing arrangement that uses a rotatable bore selector 

whipstock to select a one of up to three well bores. 

	 As previously described, the technology allows concurrent 
drilling of multiple wells using batched drilled hole-sections 
accessed by a rotatable bore selector whipstock as shown in 
Figure 11.

	 Where the North Sea Magnus Field used 46 inch conduc-
tors (Hicks, 2009)1 a subsea version of the conductor sharing 
could use a 48” conductor to provide three conventional 22 
inch wellhead casing hanger systems in a “Cloverleaf” pattern 
accessible using a rotatable bore selector whipstock through 
an 18 ¾ inch conventional wellhead housing as shown in Fig-
ures 10 and 11.

	 Figure 10, shows that the equivalent internal diameter of 
three (3) 9 ⅝ inch casings (8.7 inches) can be accommodat-
ed through and 18 ¾ inch subsea wellhead housing for three 
conventional tubing strings with associated control lines and 
clamps.

	 Accordingly, casings can be hung-off below the whipstock 
with three (3) independent tubing strings passing through an 
18 ¾ inch wellhead housing internal diameter.

	 As depicted in Figure 11, Oilfield Innovations proposes 
that a conventional big-bore subsea wellhead housing and 
casing hanger system be split by a rotatable whipstock ar-
rangement to select which well bore will be entered.  New 
technology development does not get any simpler nor more 
adaptable to standardisation that allows rapid development 
and widespread usage.
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Figure 12 - Britannia Triple Wellhead Arrangement (Matheson, 2008)11
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Figure 13 - Theoretical Plan View of a Conductor Sharing Subsea Tree
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	 An example of a three-well conductor sharing arrangement 
is shown in Figure 12 for the UK North Sea field Britannia 
(Matheson, 2008)11.  The existence of a proven three well 
surface conductor sharing arrangement indicates that subsea 
conductor sharing is feasible using, for example, the conduc-
tor sharing subsea arrangement illustrated in Figure 13.

	 The primary differences between surface and subsea pro-
duction trees comprises annulus access and the ability to ac-
tuate valves both hydraulically and with a remote operated 
vehicle (ROV).

	 Figure 13 illustrates a scaled version of 48” Cloverleaf 
subsea conductor sharing arrangement depicting how a com-
mon central block can be bored to accommodate flow blocks 
and actuators for a three well subsea production tree.

	 Flow from the three (3) separate well wells can be directed 
from the flow blocks to a commingling manifold or, alterna-
tively, individually to a conventional subsea manifold.

	 The Cloverleaf three well arrangement has a common an-
nulus passageway between the three wells that can also be ac-
cessed through an annulus flowline in a conventional manner.

	 The Figure 13 arrangement fits within a conventional per-
manent guide base having 72 inch radius guide posts for 
blowout prevention stacks (BOPs), wherein the arrangement 
of tree and BOPs can be seen in Figures 33 and 35 of the ap-
pendix.

	 To further reduce cost, the tree can be configured as a ver-
tical tree with light well intervention vessel (LWIV) access 
to the three individual well bores via a subsea lubricator (see 
Figure 37) to allow the rig to drill the well and go off con-
tract, with a lower cost LWIV setting the tree and performing 
hook-up operations.
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Large Diameter High Pressure Conductors

	 One of the downsides of large diameter piping is a relative-
ly low pressure rating.  Fortunately, Oilfield Innovations have 
also patented solutions to this dilemma as shown in Figure 
14, which is described in more detail with another prospectus 
on our website.

	 Low burst and collapse pressure rating for large diameter 
piping are associated with the propensity of large diameters 
pipe expansion and compression, respectively.  Oilfield Inno-
vations have patented the principle driving ribs between con-
ductors to compress a large diameter inner pipe and expand a 
larger diameter outer pipe, to form a composite large diame-
ter structure that has high pressure and bending strength.

	 For instance, as described in Figure 29 of the appendix, 52 
inch conductor can be jetted into the seabed on the temporary 
guide base on the temporary guide base. A 50 inch hole open-
er (RHO, 2017)32 with a 24 inch pilot bit can then drill a hole 
for a 48” inner conductor that can pass through a standard 
49 ½” rotary table to fit within the 52 inch outer conductor 
to provide substantial bending resistance for the Figure 13 
subsea tree. 

	 With regard to pressure rating, the API 5CT pressure rating 
for X-80 grade pipe with 1.875 wall thickness shown in Fig-
ure 10 is rated to 5,500-psi (374-bar) while 110-ksi material 

would be rated to 7,500-psi (510-bar).

	 The Figure 14 patented solution to increase conductor pres-
sure ratings can, for example, use a 36 inch pilot bit with a 56 
inch hole opener to bore a hole for one (1) inch wall thickness 
52” outer conductor run and cemented with the Temporary 
guide base as shown in Figure 28.

	 A Figure 14 Cloverleaf with a 48 inch diameter and con-
ventional reinforcement ribs comprising, for example, con-
ventional solid blade casing centralizers attached to casing 
can expand the 52” outer conductor that will marginally com-
press 48” ribbed inner conductor to create a metal-to-metal 
contact composite wall with 12,000-psi burst pressure assum-
ing an 80% efficiency for an API 5CT calculation.

	 Figure 14 enhanced bending and pressure rating can facili-
tate the double independent wall safety factors necessary for 
the downhole vertical separator arrangement that can be in-
stalled below the Cloverleaf whipstock technology to dispose 
of waste water.

	 The separator can be managed and cleaned through 7 inch 
access piping as shown in Figure 14.  Water disposal can 
occur in various ways, wherein it is possible to install the 
Figures 15 and 16 “Magic Crossover” arrangement (further 
explained in a separate prospectus on our website) within 
one of the well bores to inject water into the same horizon 



17June 2017 - PROSPECTUS  | 

New Conductor Sharing Technology

P
LU

G

Inner Tubing

Cross Section A-A

Outer Tubing

Flow Ports

Flow Ports

Housing

O�-the-Shelf Plug

O�-the-Shelf-Packer

A A

Well #1 Production or Injection

Tubing
Hangers

Well #2 Production or Injection

Well #1 Safety Valve

Well #2 Safety Valve

Intervention
Sliding Valve

Intervention
Wireline Plug

MPIX - Multi-Production 
or Injection Crossover

MPIX Packer

Production Packer
(e.g. 9 5/8”)

Intermediate Casing
(e.g. 14” x 13 3/8”)

Production Casing
(e.g. 10 3/4” x 9 5/8”)

Production Annulus

Well #1 - Inner Tubing
(e.g. 4 1/2”)

Well #2 - Tubing 
(e.g. 8 5/8”x7 5/8”)

Use PDF zoom to see more

Figure 15 - Magic Crossover Simplication

Figure 16 - New Casing Sharing Tecnhology

from which it came to, effectively, sweep the reservoir and 
increase hydrocarbon production (see Figures 18 and 20).

Magic Crossover (2-for-1 Well Costs)

	 Landing surface casing within a conventional profile below 
the Figure 14 separator and landing a 9 ⅝ or 10 ¾ inch casing 
within a conventional profile above the separator can maxi-
mise separator volume and provide both annulus monitoring 
and the ability to produce and inject through a single casing 
string using the Figure 16 “Magic Crossover” arrangement.  
This is accomplished with independent concentric flow for 
both production and injection through the same casing.  
Please note that additional detailed information on our Mag-
ic Crossover is contained within another prospectus on our 
website.

	 Figures 15 and 16, illustrate how a simple crossover with 
no moving parts can be used between conventional comple-
tion equipment to flow two differently pressured flow streams 
through a single wellbore, wherein the flow streams can flow 
in the same or opposite directions.
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Figure 17 - Troll Subsea Separation Pilot (Tveter, 2015)24

Downhole Separation

	 As shown in Figure 17, Statoil have used subsea separa-
tion in Norway on the Troll field (Tveter, 2015)24. Looking at 
the size of the separator relative to the people shown in the 
Figure 17 photo, and considering the double shell nature of 
a sea bed separator, an equivalent or larger internal volume 
for the Figure 14 separator can be achieved with a vertical 
depth greater than the length of the Figure 17 Troll horizontal 
separator.

	 As shown in Figure 18, fluids produced from the reservoir 

Figure 18 - Troll Subsea Separation Pilot (Tveter, 2015)24

are directed into the high pressure water knock-out separa-
tor with two phase flow down the pipeline and water dispos-
al comprising re-injection of produced water back into the 
aquifer below the reservoir.

	 Tveter24 describes in Figure 20 that subsea water separa-
tion and disposal prior to entering the pipeline extends the 
life of the field and increases recoverable reserves.

	 Accordingly, adding downhole separation can be a signif-
icant improve the economics of developing stranded hydro-
carbons.
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Figure 19 - Cloverleaf Vertical Separator
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	 Figure 19 describes how the Figure 11 separation of the wellhead 
housing connector and casing hangers can be further separated to 
create a downhole vertical separator, while Figure 10 shows the 
available space for separator piping.  Please note that a conventional 
single well subterranean vertical separator and/or monopod jacket 
vertical separator are explained in our High Pressure Conductor Pro-
spectus.

	 As depicted in Figure 19, produced fluids from the wells can be 
directed to a Cloverleaf downhole vertical separator where gravity 
separates the lighter hydrocarbons from the heavier water.

	 Hydrocarbons are taken from the top of the Figure 19 vertical sep-
arator and produced water is taken from the lower portion of the 
vertical separator, wherein the down comer plate and length of the 
hydrocarbon entry and exit piping would be designed according to 
the gas-to-oil ratio of the hydrocarbons.

	 To provide a clearer depiction, Figure 19 shows disposed water 
being pushed into the overburden, however, space for three 7 inch 
separator pipes shown in Figure 14 exists and can comprise the hy-
drocarbon pipe feeding the separator, the hydrocarbon export pipe 
feeding the pipeline and the water disposal pipe which can pump 
water from the bottom of the separator and, for example, use the 
Figure 16 “Well #2 Production or Injection” Magic Crossover flow 
stream to dispose of water into the water leg of the reservoir being 
produced, which provides the same functionality as Figure 18 with-
out the cost of a disposal well.

	 With regard to barriers, Figure 14 describes use of Oilfield In-
novations patented pressure reinforced double separator hull, which 
can be cemented within the shallow overburden such that the double 
hull, cement and overburden insulated vertical separator can pro-
vide approximately reservoir temperature export fluids when the 
heat exchanger nature of the wells running through the separator and 
the mass transfer of heat from disposed water are considered.  Each 
well uses a common pressure integrity monitoring annulus, which 
is separate from and runs through the vertical separator within the 
insulation of cement and surrounding overburden to maximise the 
temperature and increase the flow assurance properties before hydro-
carbons enter the tie-back pipeline.

	 Piping separate from the wells may be accessed from above via 
the lubricator of a light well intervention vessel (see Figure 37) to 
allow cleaning and maintenance of the vertical separator, wherein a 
light well intervention vessel could use coiled tubing to clean out the 
separator periodically if, for example, it became filled with produced 
solids.

	 Because a subterranean separator can be, for example, 500-ft or 
152 metres in height, it can handle a large volume of fluids and pro-
duced solids, wherein optical fibre temperature and pressure moni-
toring of the separator volume can provide sufficient data to manage 
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Figure 20- Troll Subsea Separation Pilot (Tveter, 2015)24

the separator and determine whether, or not, it needed to be 
cleaned out.

	 Also, hydrocarbons from three (3) separate small pool res-
ervoirs could be commingled in the separator together with 
any necessary chemical additions within the insulated near 
reservoir temperatures of the vertical separator to improve 
mixing and associated flow assurance through the tie-back 
pipeline.

	 Metering of each of the wells and sampling taken when one 
or more of the wells is shut-in can be used for allocations and 
determination of the properties and qualities of the hydrocar-
bons from each previously stranded hydrocarbon pool.

Increased Recoverable Reserves

	 Developing stranded hydrocarbon pools is not necessarily 
strictly a cost cutting exercise.  It also involves increasing the 
recoverable reserves as shown in the Troll subsea separation 
example of Figure 20.

	 Stranded hydrocarbon development economics can often 
be impeded by the host facility’s inability to handle produced 
water, wherein the economics of stranded hydrocarbons nor-
mally considers early cessation of production due to pro-
duced water, before reservoir pressure is fully depleted.

	 In Figure 20, Tveter24 depicts how the subsea disposal of 
produced water allows higher production rates that reduce 
wellhead pressure and increase recoverable reserves by re-
ducing the volume of water through the tie-back pipeline be-
low the water handling capabilities of the host facility.

	 Accordingly, additional production added by downhole 
separation can be added to the economics of small pools to 

increase their viability.

The Large Impact of Three Small Innovations

	 Previous industry standardisation initiatives are critical for 
growth of an industry, but standardisation will not necessarily 
improve the economics of small pools unless innovation oc-
curs within said standardisation.

	 Oilfield Innovations can provide three small innovations 
within present standardised systems that can have a large 
positive impact on the development of stranded offshore hy-
drocarbons.

	 Our Cloverleaf conductor sharing technology provides 
the relatively small adaptation of standardised technology 
comprising splitting a standard subsea wellhead housing and 
hanger systems with a rotatable whipstock to allow conven-
tional extended reach wells that remove the need for tiebacks 
to a central manifold.

	 Our Magic Crossover technology provides the relative-
ly small adaptation of standardised technology comprising 
crossing over concentric flow streams to allow conventional 
completion jewellery to control the internal tubing diameter 
of two differently pressured fluid stream flowing in the same 
or opposite directions.

	 Our Large Diameter High Pressure conductor technology 
provides the relatively small adaptation of tubular standards 
comprising the use of ribbing to engage one conductor within 
another conductor to increase its bending, burst and collapse 
pressure capabilities significantly.

	 Combining these three small innovations has the signifi-
cant impact of reducing development cost by reducing subsea 
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Figure 21 - New Plug-and-Play Paradigm (Iterative Approach, Hopper, 2016)18

infrastructure to an absolute minimum while providing the 
ability to access multiple differently pressured small pools 
and/or fault blocks through a single wellhead.

	 Oilfield Innovations’ Cloverleaf can provide three autono-
mous wells while our Magic Crossover can provide two dif-
ferently pressure flow streams through each autonomous well 
to, thus, provide six (6) separate differently pressured flow 
streams through a single wellhead, whereby each of the six 
(6) separately pressured flow streams can be flowed through 
a high pressure thermally insulated water knock-out vertical 
separator that can provide a commingled chemically treated 
hydrocarbon flow stream to a single tie-back pipeline.

	 Oilfield Innovations three small adaptations could be stan-
dardised to better facilitate widespread use and development 
of supporting new technologies that can be used to reduce 
costs, increase recoverable reserves and develop stranded 
offshore hydrocarbons.

New Paradigm

	 As illustrated in Figure 21, the three possible outcomes of 
further evaluating development of stranded hydrocarbon dis-
coveries are that previous development scenarios are repeat-
ed and fail, new scenarios of using marginally less expensive 
approaches provide marginal economics or new technology is 
developed that make stranded hydrocarbons discoveries eco-
nomic despite the normal risks of offshore development.

	 Because fracking technologies will limit the price of oil 
and gas for some time, development of stranded offshore hy-
drocarbons requires a new paradigm that substantially chang-
es the economics of tie-backs to existing infrastructure.

	 With Oilfield Innovations’ limited adaptation of existing 
standardized technologies, a new paradigm can be created 
with limited risk that substantially changes the economics 
using batch (assembly line) drilling techniques, utilisation 
of previous wasted well bore space and downhole water 
separation and disposal before two (2) to six (6) separately 
pressured hydrocarbon streams enter a single tie-back pipe-
line with a single umbilical using a combined subsea tree and 
manifold.

	 Oilfield Innovations may be a two man dog-and-pony-
show that may lack the credibility necessary to single-hand-
edly create such technology, but we own the patents and we 
are looking for commercial entities with sufficient credibility, 
experience and funding to bring enormous amounts of strand-
ed offshore hydrocarbon  to market.

	 Commercial considerations could be agreed to open source 
connection interfaces to Oilfield Innovations’ patented tech-
nology to allow any vendor to interface with the new technol-
ogy, wherein the legal rights associated with the patents could 
be managed by a service provider such that the interfaces are 
standardized in an open source manner.

	 Providing large and small service providers with access to 
interfacing with the new technology would improve the like-
lihood of acceptance, create competition and keep costs as 
low as reasonably practicable.

	 For example, Shell released the technology of bi-centre 
bits (see Figure 36) and now most bit companies produce 
bi-centre bits using standardized API rotary connections.

	 The North Sea has since the booms of the 1970’s and early 
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1980’s been relatively resistant to change and, therefore, cre-
ating a standard that is distributed worldwide could provide 
the necessary use in other countries to influence its accep-
tance in the North Sea.

	 Required adaptations proposed herein are relatively minor 
and lower in cost than other innovations that have provided 
step changes in performance.

	 For example, Oilfield Innovations are proposing splitting 
a subsea hanger system, adapting a whipstock and making a 
crossover according standardised pipe sizes, whereas the step 
changes in extended reach drilling between 1975 to 2010, 
shown in Figure 7, required complete retooling of drilling 
systems from rotary kelly drilling to top-drives, positive dis-
placement fluid motors and rotary steerable systems, albeit 
each involved a sequence of understandable and acceptable 
changes that were built upon API standards for rotary con-
nections.

Commercialisation

	 As illustrated in Figure 22, the sweet spot for small pool 
development requires solving issues in the project, business 
and strategic frames, wherein collaboration between Oilfield 
Innovations and OGTC could provide two of the three neces-
sary characteristics for development.

	 Most people, including Oilfield Innovations, focus on the 
technical aspects of the project.

	 Plug-and-play open sourcing could be used to focus on the 
strategic frame.

	 As a micro-company, the business frame is beyond Oilfield 
Innovations’ control and we are looking for investors.  Plug 
and play open sourcing is one idea, but we are open to any 
commercial arrangement.

	 As described in Figure 23, a business case can be built by 
identifying various UK North Sea small pools, see Figures 24 
to 27, which can analysed and evaluated to provide business 
cases that may further influence industry to develop and use 
the technology.

	 Standards can be selected and amalgamated under a single 
plug-and-play standard for industry use with the proposed 
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Conclusion

	 “Small” offshore hydrocarbon discoveries are substantially 
larger than many economic discoveries.  “Small” refers to the 
pool’s economic development size and not necessarily oil and 
gas in place.  As offshore small pools are substantially larger 
than remaining pools of onshore hydrocarbons, the key to de-
veloping offshore hydrocarbons is reducing cost and improving 
recovery.

	 When a small pool of hydrocarbons was discovered, subsea 
development and tie-back options to existing infrastructure 
were evaluated and, therefore, the small economic size of the 
stranded hydrocarbons did not justify the subsea infrastructure 
cost, tariffs, waste water disposal, well count or drilling cost 
options evaluated.

	 Standardizing plug-and-play approaches which have already 
proved uneconomic is unlikely to reduce cost sufficiently to de-
velop stranded hydrocarbons and a new approach to develop-
ment is required.

	 Also, costs for developing small pools of offshore hydrocar-

new technology, as further described in Figure 23.

	 In addition to assisting with creation of an open source 
plug-and-play specification, Oilfield Innovations are also 
qualified to identify business casings within the 100 oppor-
tunities identified in Table 1 and Figures 24 to 27.

	 Oilfield Innovations’ new technology can easily be de-
veloped and qualified by qualified service companies.

	 Commercially, Oilfield Innovations need to recoup their 
patent investment costs with the potential for a relatively 
small return on investment once the technology is success-
ful, while the United Kingdom needs the tax revenue gen-
erated by developing small pools.

	 Oilfield Innovations will accept virtually any viable 
commercial proposal and can assign control of their pat-
ents to any entity who can fund and manage development 
and the business provided we can recoup our patent costs.

	 Accordingly, the new technology can be standardized 
and published for use by qualified vendors and service pro-
viders as further stated in Figure 23.

	 As our new technologies requires minimum adaptations 
and works within standardised oil and gas technologies as 

well as conventional proprietary technologies, it is a good fit 
with OGTC’s call for plug-and-play innovations.
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bons must be competitive within current pricing set by on-
shore fracking.

	 Accordingly, a new paradigm is needed for developing 
small pools of offshore hydrocarbons; however, said para-
digm cannot significantly deviate from existing standards 
upon which the oil and gas industry is built.

	 Oil and gas drilling have used plug-and-play standard-
ization for decades.  The various sizes of tooling for drill-
ing and completion have been standardized through API 
and ISO such that conventional extended reach drilling 
technology can be used to eliminate tie-backs to a central 
subsea manifold.

	 Also, conventional conductor sharing can be adapted to 
subsea applications using Oilfield Innovations rotatable 
whipstock bore selector to improve drilling and casing ef-
ficiency using hole-section batch operations.

	 Changing the paradigm of uneconomic small pools of 
offshore hydrocarbons discoveries requires not only mini-
mising subsea infrastructure and improving drilling perfor-
mance but also limiting well count and managing produced 
waste water disposal.

	 Disposing of produced water before it reaches the tie-
back pipeline can increase recoverable reserves and min-
imise development costs, wherein increased recovery and 
lower costs can make small pools of hydrocarbons more 
economic.

	 Oilfield Innovations can open source our patented tech-
nology in a supply chain plug-and-play manner, wherein 
the legal rights afforded by our patents can provide supply 
chain control during and after standardization to ensure 
competitive pricing.

	 The supply chain organisation who controls our patents 
would have the legal right to make critical standardization 
decisions and control quality assurance of the standard.

	 For example, for quality control purposes, a patent con-
trol supply chain organisation could license use to only 
qualified vendors who adhere to the publish standards.

	 Accordingly, Oilfield Innovations technologies are 100% 
plug-and-play compatible.

	 Three minor standardized tweaks to industry proven 
technology comprising: 

•	 a split conventional wellhead with an intermediate ro-
tatable whipstock and “cloverleaf” shaped conductor 
sharing arrangement, 

•	 a “magic” crossover that allows discrete control of 
two flow streams through the same wellbore, and 

•	  “ribbing” that can be used to create large diameter high 
pressure conductors which can be used to retain larger 
hole sizes at well total depth, facilitate monopod jack-
ets in deeper water depths and/or provide double walled 
subsea or subterranean vertical separators,

can change the paradigm of North Sea small pools develop-
ment without significantly deviated from standard industry 
practice.

	 Insanity is doing the same thing over and over again, and 
expecting a different result (Albert Einstein).

	 It is unlikely that North Sea small hydrocarbon pools can 
be changed without doing something different and it is im-
portant to work within the boundaries of present industry 
standards.

	 Oilfield Innovations can offer minor changes, which can be 
standardized in a plug-and-play manner within proven indus-
try standards, that can change the way small pools of hydro-
carbons are developed.

	 If our ideas are of interest, we would be pleased to discuss 
how they could be further developed.  For additional infor-
mation please read our accompanying submittals.
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Further Information

	 Addition detailed information on the Oilfield Innovations’ 
Conductor Sharing Technology described above is included 
in Appendix A, please provide this document to your engi-
neers and we would be happy to answer any further queries.  
For additional information or further queries please contact 
Clint Smith or Bruce Tunget at the below email addresses.

Notes and references
a Clint Smith is Professional Engineer in the State of Texas, began working in 
the Drilling, Intervention and Well Operations in 1978 and lives in Houston, 
Texas, USA; Curriculum Vitae (CV) available upon request; clint@oilfieldinno-
vations.com

b Bruce Tunget earned a PhD. and MSc in Mineral Economics and a BSc 
in Mineral Engineering from the Colorado School of Mines, is a Chartered 
Financial Analyst, began working in Drilling, Intervention and Abandonment 
Operations in 1982 and lives in Aberdeen, Scotland; Curriculum Vitae (CV) 
available upon request; bruce@oilfieldinnovations.com

†	 Various photograph have been taken from the following cited references.
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Figure 27- Sothern North Sea Small Pools Map (OGA, 2016)21
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Figure 28- Installing Temporary Guide Base
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Installation Sequence

	 For those unfamiliar with subsea well operations, Figures 
28 through 35 describe the installation process for Oilfield 
Innovations “Cloverleaf” new well technology.

Temporary Guide Base

	 Subsea operations generally begin with running of the tem-
porary guide base through which the initial top hole section is 
drilled.

	 As depicted in Figure 28, the temporary guide base is run 
on drill pipe and landed on the sea bed to establish guide lines 
after the running tool is pulled back to surface.
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Figure 29- Drilling 52” Hole

50” Hole Section

	 As illustrated in Figure 29, a utility frame at-
tached to the guide wires is used to stab the drill-
ing assembly into the temporary guide base.

	 In this instance a 24 inch pilot bit and 50 inch 
hole opener is used to drill the initial top hole sec-
tion through the 52 inch outer conductor jetted in 
with the temporary guide base as shown in Figure 
28.
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Figure 30- Running Permanent Guide Base and 48” Cloverleaf Multi-Well Conductor

Cloverleaf Whipstock Installation

	 Figure 30 shows installation of the permanent guide base 
on the guide wires followed by running casing equipment 
through the guide base.

	 Merlin™ snap connectors can be used to run a bundle of 
three 20 inch casings through the permanent guide base at the 
same time.

	 A bundle of three conventional casing hangers at the bot-
tom of the Cloverleaf Whipstock can then be snapped onto 
the 20 inch casings.

	 A running tool is then attached to the conventional subsea 
wellhead at the top of the Cloverleaf Whipstock and the per-
manent guide base and casing are run into the hole and landed 
in the temporary guide base.

	 The entire assembly is then cemented within the open hole.
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Figure 31- Running Permanent Guide Base and 48” Cloverleaf with 48” Vertical Separator

Installing Cloverleaf and Separator

	 Figure 31 illustrates installation of the permanent guide 
base on the guide wires followed by running casing equip-
ment through the guide base.

	 An assembly with three drill out casing shoes is attached 
to a 48 inch vertical separator housing run through the guide 
base.  Further 48 inch joints are screwed together using, for 
example, XLW™ connectors shown in Figure 38 and run in 
the hole through the permanent guide base.

	 Once the desired length of 48” pipe for the vertical sep-
arator has been run, internal separator piping and guides are 
run using a false rotary table for make-up of the separator’s 
internal piping.

	 Three conventional casing hanger conduits and the Clo-
verleaf Whipstock are attached to the top joint of the vertical 
separator with separator piping strapped eternally.

	 A running tool is then attached to the conventional subsea 
wellhead at the top of the Cloverleaf Whipstock and the per-
manent guide base and casing are run into the hole and landed 
in the temporary guide base.

	 The entire assembly is then cemented within the open hole.
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Figure 32- Running BOPs on Floating Rig

Floater BOPs and Drilling Operations

	 Figure 32 depicts the installation of a floating drilling 
rig’s blowout preventers (BOPs) onto the 18 ¾” subsea 
wellhead.

	 All equipment is sized for passage through the standard 
18 ¾ inch BOP and wellhead internal diameter, whereby 
the Cloverleaf whipstock is retrieved, rotated and re-in-
serted through the BOPs to access each of the wells below 
the Cloverleaf assembly.

	 With the exception of pulling, rotating and re-inserting 
the bore selector whipstock, drilling operations continue 
as they would during any other batch operations.
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Figure 33- Running Tree on Floating Rig

Floater BOPs and Completion Operations

	 Figure 33 shows the installation of a floating drill-
ing rig’s blowout preventers (BOPs) on top of the 
subsea production tree during completion operations.

	 Either a vertical or horizontal subsea tree can be 
used.

	 All completion equipment is sized for passage 
through the standard 18 ¾ inch BOP and subsea tree, 
whereby the Cloverleaf whipstock is used to run the 
completion strings for each of the wells.

	 The completion strings are hung-off within the 
Cloverleaf arrangement until all of the completions 
strings have been run into each well.  The rotatable 
whipstock is then removed and each of the comple-
tion strings is lifted and connected to a centralised 
bundle where control lines and cables are connected, 
tested and then landed in the wellhead before setting 
the production packers or, alternatively, using con-
ventional mandrels stabbed into polished bore recep-
tacles (PBRs) attached to the top of each pre-set pro-
duction packer.

	 The subsea completion arrangement and trees 
would be similar to conventional conductor sharing 
arrangements, which would require design assistance 
from a qualified vendor.
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New Conductor Sharing Technology
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Figure 34- Running BOPs on Jack-Up Rig

Jack-up BOPs and Drilling Operations

	 Figure 34 depicts the installation of a jack-up 
drilling rig’s blowout preventers (BOPs) onto a high 
pressure riser attached to the 18 ¾” subsea wellhead 
with a conventional connector.

	 Many newer jack-ups have begun using 18 ¾ inch 
BOPs that are suited to such operations.

	 All equipment is sized for passage through the 
standard 18 ¾ inch BOP and wellhead internal diam-
eter, whereby the Cloverleaf whipstock is retrieved, 
rotated and re-inserted through the BOPs to access 
each of the wells below the Cloverleaf assembly.

	 With the exception of pulling, rotating and re-in-
serting the bore selector whipstock, drilling opera-
tions continue as they would during any other batch 
operations.
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Figure 35- Running Tree on Jack-Up Rig

Jackup BOPs and Completion Operations

	 Figure 35 shows the installation of a jack-up drilling 
rig’s blowout preventers (BOPs) on top of the subsea 
production tree during completion operations.

	 Either a vertical or horizontal subsea tree can be 
used.

	 All completion equipment is sized for passage 
through the standard 18 ¾ inch BOP and subsea tree, 
used by newer jack-up drilling rigs, whereby the Clo-
verleaf whipstock is used to run the completion strings 
for each of the wells.

	 The completion strings are hung-off within the Clo-
verleaf arrangement until all of the completions strings 
have been run into each well.  The rotatable whipstock 
is then removed and each of the completion strings 
is lifted and connected to a centralised bundle where 
control lines and cables are connected, tested and then 
landed in the wellhead before setting the production 
packers or, alternatively, using conventional mandrels 
stabbed into polished bore receptacles (PBRs) attached 
to the top of each pre-set production packer.

	 The subsea completion arrangement and trees would 
be similar to conventional conductor sharing arrange-
ments, which would require design assistance from a 
qualified vendor.
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Figure 36- How a Bicentre Bit Works (Varel®, 2017)29
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Figure 37- Rigless Light Well Intervention Vessel (LWIV) Equipment 
(Schlumberger)

Bi-centre Bits

	 Figure 36 illustrates how a bi-centre bit 
can drill a larger diameter hole than the 
casing through which it passes.

	 Bi-centre bits are an example of how 
open sourcing new technology can be used 
to introduce new technology.

Light Well Intervention Vessels

	 Figure 37 depicts a Light Well Intervention Vessel (LWIV) which can be used 
to intervene in subsea wells after production has started.

	 Oilfield Innovations’ Cloverleaf technology is compatible with LWIV opera-
tions and can be used in instances where commingled flow from multiple wells in 
amalgamated into a single flow stream downhole or, alternatively, where multiple 
production strings are passed through the wellhead to separate production trees 
that are commingled after passing through the production choke manifold.
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Features Benefits

Connector ratings meet or exceed 
full pipe body strength

Reliable performance under extreme loading 
conditions

Integral lift shoulder

Internal metal seal Reliable pressure integrity

Wedge thread technology Easy spin-up, high torque capacity, excellent 
resistance to anti-rotation

XLW™ CONNECTORS
Pipe-to-Connector Weld

PIN

PIPE

Wedge Thread
Narrow thread near the 
connector end face and wider 
thread near the connector 
back shoulder

Dovetail Thread Shape

Thread Fit Seal
Close tolerance thread  
design creates a secondary 

Metal Seal
Internal metal-to-metal 
pressure seal

Integral Pin 
Thread

Integral Lift 
Shoulder 

Weld-on Box

BOX

48” OD

49.25” OD 5100-psi (X80 1.75” Wall Thickness)
5830-psi (X80 2” Wall Thickness)
6560-psi (X80 2.25“ Wall Thickness)
7290-psi (X80 2.5” Wall Thickness)

Figure 38- XLW® 48” Pipe Connector  (XL Systems, 2017)31

Example Conductor Coupling

	 Figure 38 illustrates an XL Systems™ proprietary connec-
tor that is capable of being used within a Cloverleaf down-
hole separator arrangement.
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